Experimental Quantification of Phase Transformation in Austenitic Stainless Steel
نویسندگان
چکیده
This conference paper briefly discusses different techniques for measuring the evolution of the martensite content in cold-rolled stainless steel 301LN sheets under mechanical loading. Three methods are employed to measure the martensite content: (1) micrography, (2) bulk magnetic induction, and (3) local magnetic permeability measurements. The first two methods require the extraction of samples from the specimen while the third method allows for the in-situ monitoring of the martensite content. The results show that micrography provides only a poor accuracy in quantifying the martensite content, while the two magnetic methods yield satisfactory results. A ferritescope is used to perform the in-situ magnetic permeability measurements. The results from magnetic induction measurements are used to establish a relationship between the ferritscope output signal and the martensite content. A series of uniaxial experiments is carried out to investigate the effect of initial texture on the martensitic transformation kinetics.
منابع مشابه
Strain-Induced Martensite Transformation Simulations during Cold Rolling of AISI 301 Austenitic Stainless Steel
Austenite is a semi-stable phase in most stainless steels that deforms to martensite under Md30 and forms martensitetype ά and ε due to the deformation in the steels. Since the distribution of strain induced martensite plays animportant role in achieving desired properties, the main objective of the present work is to model martensitedistribution of ά during cold rolling using...
متن کاملPHASE TRANSFORMATION DURING WEAR OF AISI STAINLESS STEEL 316
Abstract: Austenitic stainless steels exhibit a low hardness and weak tribological properties. The wear behaviour of austenitic stainless steel AISI 316 was evaluated through the pin on disc tribological method. For investigating the effect of wear on the changes in microstructure and resistance to wear, optical microscopy and scanning electron microscope were used. The hardness of the worn...
متن کاملArtificial neural network models for production of nano-grained structure in AISI 304L stainless steel by predicting thermo-mechanical parameters
An artificial neural network (ANN) model is developed for the analysis, simulation, and prediction of the austenite reversion in the thermo-mechanical treatment of 304L austenitic stainless steel. The results of the ANN model are in good agreement with the experimental data. The model is used to predict an appropriate annealing condition for austenite reversion through the martensite to austeni...
متن کاملMartensite ? austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel
A generalized phase transformation kinetics model is used to understand the martensite to austenite transformation in a cold-rolled and annealed metastable AISI 301LN ultrafine-grained austenitic stainless steel. The model shows that the presence of interstitial nitrogen and heavy cold-rolling is important to promote fast transformation kinetics, through rapid nitrogen-diffusion and austenite n...
متن کاملStructural transformations in austenitic stainless steel induced by deuterium implantation: irradiation at 100 K
Deuterium thermal desorption spectra were investigated on the samples of austenitic stainless steel 18Cr10NiTi preimplanted at 100 K with deuterium ions in the dose range from 3 × 10(15) to 5 × 10(18) D/cm(2). The kinetics of structural transformation development in the implantation steel layer was traced from deuterium thermodesorption spectra as a function of implanted deuterium concentration...
متن کاملMicrostructure and mechanical properties evaluation of diffusion bonded joints of titanium to AISI 304 austenitic stainless steel
In this study, diffusion bonding between titanium and AISI 304 austenitic stainless steel by Ag interlayer was investigated. In order to carry out this research, samples prepared after surface preparation were placed inside the fixture and placed at the temperatures of 750,800 and 850 °C in the 30,60 and 90 min in the furnace under argon protective gas. The phase transformation and microstructu...
متن کامل